【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。
【教法学法】试验探究法 小组合作学习法
【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
【教学流程】
一、回顾旧知,沟通联系。(2分钟)
师:同学们,前几节课我们学习了有关圆柱体和圆锥的知识, 李老师在上新课前,想考考大家,看大家学习得怎么样。好吗?
生:好。
1、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
2、完成练习题,让学生复习圆柱体体积公式。
二、创设情景,引出问题。
1.出示圆锥形小麦堆的图片。(4分钟)
师:同学们,看,小麦堆得像小山一样,小麦丰收了。爸爸出了一道难题考小芳,让她算算这堆小麦的体积。这可难倒小芳了,因为她只学过圆柱的体积计算,圆锥体怎么样计算还没有学,你可以帮帮她吗?
生:可以。
师:关于圆锥,你已经知道了什么?
学生1:我知道什么样的物体是圆锥,还知道圆锥各部分的名称。教师请该生上台用实物进行介绍。
学生2:我还知道圆锥的高只有一条。老师让该生上台利用实物具体介绍高从哪儿到哪儿。
学生3:我知道圆锥的侧面展开是一个扇形,底面是圆形。
师:关于圆锥,你还想知道什么?
学生1:我想知道圆锥的侧面积怎么计算?共3页,当前第1页123
- 推荐阅读:
- 《圆锥的体积》教学案例
- 《圆锥的体积》教学设计
- 六年数学下册《圆锥的体积》教材分析北师大版
- 圆锥的体积教学案例分析
- 圆锥的体积
- 圆锥的体积(教案设计)
- 六年级下册科学教案
- 六年级下册语文教案
- 六年级下册数学教案
教师追问:你认为应该怎么计算呢?
学生1:应该用扇形的面积加上底面圆的面积。
教师肯定,同时说明:由于我们还没有学习扇形的面积计算方法,所以在小学我们不学习圆锥的侧面积计算。
学生2:我想知道怎样计算圆锥的体积?
教师追问:那你认为圆锥的体积应该怎样计算呢?大家想一想。今天我们就一起来研究圆锥的体积。(板书课题)
2.引导学生独立思考,提出猜想。(1分钟)
根据学生的各种猜想,教师进一步引导学生思考:我们学过哪些图形的体积计算?你觉得圆锥体积可能和哪种图形的体积有关?
既然有人认为圆锥的体积可能与圆柱有关,那么,我们就借助圆柱来探究圆锥的体积计算方法,看看行不行?
3.引导学生进一步观察、比较、猜测。(4分钟)
(1)教师举起圆柱、圆锥教具,把圆锥套在透明的圆柱里面,让学生想想他们的体积之间有什么联系。
(2)学生猜测。
(3)既然圆锥的体积与圆柱有关,是不是随便一个圆柱都与圆锥的体积有关?我们回想一下,圆柱的体积与什么有关?(底面积和高)那么圆柱和圆锥我们就要研究的重点就放在底面积和高。引导学生说出以下几种情况:
等底等高,等底不等高,等高不等底,不等高不等底
你觉得所有的情况都要研究吗?我们看看老师列举的情况(课件),你觉得等底不等高,等高不等底,不等高不等底还有必要实验吗?当然,刚才同学们都是猜测,我们必须通过实验去验证。
4.实验探究。(14分钟)
(1)开始实验收集数据。
师:圆锥的体积究竟与圆柱体积有什么关系?请同学们亲自验证。等底等高和不等底不等高的各种圆柱、圆锥的教具。实验要求:根据需要选用实验用具,小组成员分工合作,轮流操作,并做好实验数据的收集整理。
1号圆锥
2号圆锥
3号圆锥
次数
与圆柱是否等底等高
让学生先分小组议一议如何实验,再动手。
学生动手实验,教师巡视指导。
(2)汇报实验结果。
师:观察大家的数据,你发现了什么?
师:进一步观察,在什么情况下圆柱刚好能装下三个圆锥的水?
师:是不是所有符合等底等高都有这样的关系?
教师用课件再演示。
(3)总结归纳。
教师说明:可能同学们在实验过程中,不一定刚好是3次,可能差一点点,这是我们实验中允许的误差,由于我们知识所限,现在只能用实验法这样不太严格的方法来推导,将来你们将用到更加高深的数学知识来推导公式。但是数学家已经证明了这一结论,大家可以直接用。
(4)小组讨论:你们发现了什么?得出怎么样的结论?
(5)圆锥体积计算公式的推导。
(5)加深理解公式。要求圆锥的体积,必须知道什么信息?
三、巩固提高,解决问题。(12分钟)
1.应用新知
一个圆锥形的零件,底面积是28.26平方厘米,高是12厘米。这个零件的体积是多少? “底面积是28.26平方厘米”改为
“底面半径是3厘米”、
“底面直径是6厘米” 、
“底面周长是18.84厘米”
2. 打谷场上,有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?(回归问题)
注意提醒学生简便计算。
3. 做一做:一个圆锥形的零件,底面积是19平方厘米,高是12cm, 这个零件的体积是多少立方厘米?
4.我是小法官。(判断题)共3页,当前第2页123
- 推荐阅读:
- 《圆锥的体积》教学案例
- 《圆锥的体积》教学设计
- 六年数学下册《圆锥的体积》教材分析北师大版
- 圆锥的体积教学案例分析
- 圆锥的体积
- 圆锥的体积(教案设计)
- 六年级下册科学教案
- 六年级下册语文教案
- 六年级下册数学教案
5.拓展提高:把一个棱长是6厘米的正方体木块,加工成一个最大圆锥体,圆锥的体积是多少立方厘米?
四、阅读教材,思考问题。(1分钟)
今天的学习内容,请大家课后认真阅读课本。
五、小结全课,分享体会。(1分钟)
师:这节课我们探究了什么知识?怎样探究的?具体说一说。你对自己在本节课上的表现满意吗?你认为自己哪儿掌握的最好?还有什么疑惑?
学习效果评价设计:
(一)学生学习效果的评价
1、一个圆锥的半径是3厘米,高是20厘米,求圆锥的体积是多少?
2、一个圆柱的底面积是18平方分米,高是6分米,你知道与它等底等高的圆锥的体积吗?
(二)学生学习状态的评价
(1)对于今天这节课你的心情是:
高兴( ) 比较高兴( ) 一般( ) 不高兴( )
(2)这节课你举手的次数是:
10次及10次以上( ) 5次到9次( ) 1次到4次( )
没举过手( )
(3)你觉得你在本节课中的收获大吗?
大( ) 比较大( ) 一般( ) 没收获( )
六、作业布置,课外延伸。(1分钟)
找找身边的圆锥,自己测量有关数据,编写一道与圆锥体积知识的题目有关并解决。
共3页,当前第3页123
- 推荐阅读:
- 《圆锥的体积》教学案例
- 《圆锥的体积》教学设计
- 六年数学下册《圆锥的体积》教材分析北师大版
- 圆锥的体积教学案例分析
- 圆锥的体积
- 圆锥的体积(教案设计)
- 六年级下册科学教案
- 六年级下册语文教案
- 六年级下册数学教案