皮皮范文网教案大全八年级数学教案内容页

八年级数学上册第十一章期末复习提纲

2022-10-09八年级数学教案

十一章 全等三角形复习
一、全等三角形
能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“sss”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“sas”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“asa”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“aas”)
斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“hl”)
4、证明两个三角形全等的基本思路:

二、角的平分线:
1、(性质)角的平分线上的点到角的两边的距离相等.
2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:
(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”
第十二章 轴对称
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系

4.轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等
3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为__(x,-y)____.
点(x, y)关于y轴对称的点的坐标为__(-x, y)____.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)2页,当前第112


五、(等边三角形)知识点回顾
1.等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
第十三章 实数知识要点归纳
一、实数的分类:

实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数。
3、相反数与倒数;
4、绝对值

5、近似数与有效数字;
6、科学记数法
7、平方根与算术平方根、立方根;
8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。
二、复习方案二
1. 无理数:无限不循环小数

2页,当前第212
再来一篇
上一篇:第十三章“全等三角形”简介 下一篇:三角形全等的判定
猜你喜欢