教学目标
1.使学生理解平行线的性质和判定的区别.
2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点难点
重点:平行线的三个性质.
难点:平行线的三个性质和怎样区分性质和判定.
关键:能结合图形用符号语言表示平行线的三条性质.
教学过程
一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?
2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图进行实验观察.
设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?
请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等.
2.演绎推理,发现平行线的其它性质
(1)已知:如图,直线ab,cd被直线ef所截,ab∥cd.
求证:∠1= ∠2.
(2)已知:如图2-64,直线ab,cd被直线ef所截,ab∥cd.
求证:∠1+∠2=180°.
在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.
3.平行线判定与性质的区别与联系
投影:将判定与性质各三条全部打出.
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.
三、例题
例2如图所示,ab∥cd,ac∥bd.找出图中相等的角与互补的角.
此题一定要强调,哪两条直线被哪一条直线所截.
答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠bac+∠acd=180°,∠abd+∠cdb=180°,∠cab+∠dba=180°,∠acd+∠bdc=180°.
相等的角还有:∠acd=∠abd,∠bac=∠bdc.(同角的补角相等)
例3如图所示.已知:ad∥bc,∠aef=∠b,求证:ad∥ef.
分析:(执果索因)从图直观分析,欲证ad∥ef,只需∠a+∠aef=180°,
(由因求果)因为ad∥bc,所以∠a+∠b=180°,又∠b=∠aef,所以∠a+∠aef=180°成立.于是得证.
证明:因为 ad∥bc,(已知)
所以 ∠a+∠b=180°.(两直线平行,同旁内角互补)
因为 ∠aef=∠b,(已知)
所以 ∠a+∠aef=180°,(等量代换)
所以 ad∥ef.(同旁内角互补,两条直线平行)
四、练习:
1.如图所示,已知:ae平分∠bac,ce平分∠acd,且ab∥cd.
求证:∠1+∠2=90°.
证明:因为 ab∥cd,
所以 ∠bac+∠acd=180°,
又因为 ae平分∠bac,ce平分∠acd,
所以 , ,
故 .
即 ∠1+∠2=90°.
(理由略)
2.如图所示,已知:∠1=∠2,
求证:∠3+∠4=180°.
分析:(让学生自己分析)
证明:(学生板书)
小结
我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
1.如图,ab∥cd,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?共2页,当前第1页12
2.如图,ef过△abc的一个顶点a,且ef∥bc,如果∠b=40°,∠2=75°,那么∠1、∠3、∠c、∠bac+∠b+∠c各是多少度,为什么?
3.如图,已知ad∥bc,可以得到哪些角的和为180°?已知ab∥cd,可以得到哪些角相等?并简述理由.
5.3平行线性质(二)
[教学目标]
经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力
理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论
能够综合运用平行线性质和判定解题
[教学重点与难点]
重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念
难点:平行线性质和判定灵活运用
[教学设计]
一.复习引入
1.平行线的判定方法有哪些?
2.平行线的性质有哪些?
3.完成下面填空
已知:be是ab的延长线,ad//bc,ab//cd,若 则
4. 那么a,c的位置关系如何?
二.新课
1.例1,已知a//c, 直线b与c垂直吗?为什么?
例2如图是一块梯形铁片的残余部分,量得 ,梯形另外两个角分别是多少度?
2.实践 与探究
(1)学生操作:用三角尺和直尺画平行线,做成一张
个格子的方格纸。观察并思考:做出的方格纸的一部分,
线段 … 都与两条平行线 垂直
吗?它们的长度相等吗?
教师给出两条平行线的距离定义:同时垂直于两条平行线,
并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:ab//cd,在cd上任取一点e,作 垂足f,问ef是否垂直dc?垂线段ef是平行线ab、cd的距离吗?
结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3.命题和它的构成
下列语句,分析语句的特点
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。
(2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式
(4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出“是”或“不是”的判断
命题:判断一件事情的句子,叫做命题
(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成“如果…,那么…”的形式,
三.巩固练习
1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?
2举出一些命题的例子
四.作业
课本p25