皮皮范文网教案大全七年级数学教案内容页

7.2 简单的轴对称图形

2022-10-09七年级数学教案

教学目标:
1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线、线段垂直平分线的有关性质.
教学重点:
1、角、线段是轴对称图形
2、角的平分线、线段垂直平分线的有关性质
教学难点:角的平分线、线段垂直平分线的有关性质
准备活动:准备一个三角形、一张画好一条线段的纸张
教学过程:
先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.
一、探索活动
教师示范:(按以下步骤折纸)
1、在准备好的三角形的每个顶点上标好字母;a、b、c.把角a对折,使得这个角的两边重合.
2、在折痕(即平分线)上任意找一点c,
3、过点c折oa边的垂线,得到新的折痕cd,其中,点d是折痕与oa的交点,即垂足.
4、将纸打开,新的折痕与ob边交点为e.
教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的概念.
学生通过思考应该大部分都能明白角是轴对称图形这个结论.
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?
学生应该很快就找到相等的线段.
下面用我们学过的知识证明发现:
如图,已知ao平分∠bac,oe⊥ab,od⊥ac.求证:oe=od.
巩固练习:在rt△abc中,bd是角平分线,de⊥ab,垂足为e,de与dc相等吗?为什么?

(1)如图,oc是∠aob的平分线,点p在oc上,po⊥oa,pe⊥ob,垂足分别是d、e,pd=4cm,则pe=__________cm.
(2)如图,在△abc中,,∠c=90°,ad平分∠bac交bc于d,点d到ab的距离为5cm,则cd=_____cm.
内容二:线段是轴对称图形吗?
做一做:按下面步骤做:
1、用准备的线段ab,对折ab,使得点a、b重合,折痕与ab的交点为o.
2、在折痕上任取一点c,沿ca将纸折叠;
3、把纸展开,得到折痕ca和cb.
观察自己手中的图形,回答下列问题:
(1)co与ab有什么样的位置关系?
(2)ao与ob相等吗?ca与cb呢?能说明你的理由吗?
在折痕上另取一点,再试一试,你又有什么发现?
学生会得到下面的结论:
(1)线段是轴对称图形.
(2)它的对称轴垂直于这条线段并且平分它.
(3)对称轴上的点到这条线段的距离相等.
应用:
(1)如图,ab是△abc的一条边,,de是ab的垂直平分线,垂足为e,并交bc于点d,已知ab=8cm,bd=6cm,那么ea=________,da=____.
(2)如图,在△abc中,ab=ac=16cm,ab的垂直平分线交ac于d,如果bc=10cm,那么△bcd的周长是_______cm.
小结:
(1)角是轴对称图形.
(2)角平分线上的点到这个角的两边的距离相等.
(3)线段是轴对称图形.
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.
(5)线段垂直平分线上的点到这条线段的两个端点距离相等.
作业:课本p193习题7.2:1、2、3.
教学后记:
学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解.的部分原因是学生忘记了点但直线的距离是什么一回事.而对于中垂线的理解较好.基本上能找到当中相等的线段,并且用学过的知识予以证明.内容较多,容量较大.课后还要加强理解和练习.

再来一篇
上一篇:《相交线与平行线》说课稿 下一篇:直方图
猜你喜欢