皮皮范文网教案大全七年级数学教案内容页

6.1.1有序数对

2022-10-09七年级数学教案

[教学目标]
理解有序数对的应用意义,了解平面上确定点的常用方法
培养学生用数学的意识,激发学生的学习兴趣.
[教学重点与难点]
重点:有序数对及平面内确定点的方法.
难点:利用有序数对表示平面内的点.
[教学设计]
 [设计说明] 一.问题探知                                
1.一位居民打电话给供电部门:“卫星路第8根电线杆          
的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
与3大道例1 如图,点a表示3街与5大道的十字路口,点b表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由a到b的一条路径,那么你能用同样的方法写出由a到b的其他几条路径吗?
 
6大道         
5大道         
4大道  a       
3大道      b   
2大道         
1大道 1街 2街 3街 4街 5街 6街 
分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:
(3,5)→(4,5)→(4,4)→(5,4)→(5,3);
(3,5)→(4,5)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(4,4)→(5,4)→(5,3);
(3,5)→(3,4)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(3,3)→(4,3)→(5,3);
根据描述的情景找出表示地点的数量

学生举例说明生活中的类似确定点的我位置的例子

明确数对的表示含义和格式

寻找规律确定路线

1.在教室里,根据座位图,确定数学课代表的位置
2.教材46页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,a点为原点(0,0),则b点记为(3,1
? 
2.如图,以灯塔a为观测点,小岛b在灯塔a北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图3页,当前第1123
,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰b的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
 
[巩固练习]
如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?
火车站与学校分别位于市政府的什么方向,怎样确

结合实际问题归纳方法

学生尝试描述位置

定他们的位置?
 
如图,马所处的位置为(2,3).
你能表示出象的位置吗?
写出马的下一步可以到达的位置。
 
[小结]
为什么要用有序数对表示点的位置,没有顺序可以吗?
几种常用的表示点位置的方法.
[作业]
必做题:教科书49页:1题

仿照前面方法确定位置关系

可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类。

6.1.2平面直角坐标系
[教学目标]
认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
渗透对应关系,提高学生的数感.
[教学重点与难点]
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
[教学设计]
 [设计说明] 一.利用已有知识,引入                                
1.如图,怎样说明数轴上点a和点b的位置,
 
2.根据下图,你能正确说出各个象棋子的位置吗?
 
二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法

正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中a、b、c、d点的坐标。
 
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
 你能说出例1中各点在第几象限吗?
  例2 在平面直角坐标系中描出下列各点。
()a(3,4);b(-1,2);c(-3,-2);d(2,-2)
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三.深入探索
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]
教材49页习题6.1——第1题
教材50页——第2,4,5,6。3页,当前第2123
[小结]
平面直角坐标系;
点的坐标及其表示
各象限内点的坐标的特征
坐标的简单应用
[作业]
必做题:教科书50页:3题
(教材51页综合运用7,8,9,10为练习课内容)

明确点的坐标的表示法

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

3页,当前第3123
再来一篇
上一篇:1.1 正数和负数(2) 下一篇:乘法公式的再认识—因式分解
猜你喜欢