教学目标:1、学会利用等式性质1解方程; 2、理解移项的概念; 3、学会移项。 教学重点:利用等式性质1解方程及移项法则; 教学难点:利用等式性质1来解释方程的变形。 教学准备: 1、投影仪、投影片。 2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。 教学过程:(一)引入新课: 1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系? 方程是等式,但必须含有未知数; 等式不一定含有未知数,它不一定是方程。 2、下面的一些式子是否为方程?这些方程又有何特点? ① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2 由学生小议后回答:①、④是方程。 分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。 我们先来研究最简单的(只含有一个未知数的)的一元一次方程。 3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。 注意:一次方程可以含有两个或两个以上的未知数:如上例的④。 4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。 5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答) ① 2x+3=11②y2=16③x+y=2④3y-1=4y 6、什么叫方程的解?怎样解方程? 关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程 (二)、讲解新课: 1、 等式性质1: 出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。 强调关键词:"两边"、"都"、"同"、"等式"。 2、 利用等式性质1解方程: x+2=5 分析:要把原方程变形成x=?只要把方程两边同时减去2即可。 注意: 解题格式。 例1 解方程5x=7+4x 分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。 (解略) 解完后提问:如何检验方程时的计算有没有错误?(由学生回答) 只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验) 观察前面两个方程的求解过程: x+2=5 5x=7+4x x=5-2 5x-4x=7 思考:⑴把+2从方程的一边移到另一边,发生了什么变化? ⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变) 3、 移项: 从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。 注意:①移项要变号; ②移项的实质:利用等式性质1对方程进行变形。 例2 解方程:3x+4=2x+7 解:移项,得3x-2x=7-4, 合并同类项,得x=3。 ∴x=3是原方程的解。 归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项; ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式; ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。 练习:书本105页 1(口答),2(板演),想一想。 (三)、课堂小结: ①什么是一次方程,一元一次方程? ②等式性质1(找关键词); ③移项法则; ④应用等式性质1的注意点(例2归纳的三条)。 (四)、布置作业:见作业本。 共4页,当前第1页1234
§5.2解方程(2)教学目标 1. 通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程. 2. 领悟到解方程作为运用方程解决实际问题的组成部分. 3. 进一步体会同一方程有多种解决方法及渗透整体化一的数学思想. 4. 培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践. 教学重点: 正确去括号解方程 教学难点: 去括号法则和分配律的正确使用. 教学设计
教师活动
学生活动
说明
教师引入 (读教材156页引例),教师引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解. 如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3 教师组织学生讨论 教材“想一想”中的内容①首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理. 出示例题3并引导学生探讨问题的解决方法. 引导学生对自己所列方程的解的实际意义进行解释. 出示随堂练习题,鼓励学生大胆互评. 出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.) 出示随堂练习题. 出示自编练习题:下面方程的解法对不对?如果不对应怎样改正? ①解方程: 2(x+3)--5(1--x)=3(x-1) ②解方程: 6(x+8)一6=0 教师给予评价: 教师引导学生做出本节课小结. 布置作业:填写成长记录卡及课本158页习题 ①学生观看画面:两名同学到商店买饮料的情景. ②自主完成问题. 1、学生回答问题(1)用自己的语言表述理由. 2、小组内交流各自所列的方程. ①学生研讨并交流各自解决问题的过程. ②学生独立完支”想一想”中的问题(2). ①独立完成随堂练习. ③四名同学板演. ③纠正板演中的错误并总结注意事项. 1、自主完成例题 2、小组内交流各自解方程的方法. 3、总结数学思想. ①独立完成练习题. ②同桌互相检查. ①小组间比赛找错误. ②讨论交流各自看法. ③选代表说出错误的原因,并总结解本节所学方程的注意事项. 1、做出本节课小结并交流. 2、说出自己的收获。 让学生感知生活,体会数学与现实生活的联系,激起学生的学习兴趣. 不限制方法拓展学生思维空间,进一步提高学生分析问题解决问题的能力, 调动学生主动参与的积极性,体会数学的应用价值. 通过学习交流,思维方面的沟通乃至思维碰撞达到共同提高的目的. 共4页,当前第2页1234 巩固教学内容. 一题多解,培养学生发散思维,初步渗透将(x-l)作为一个整体的思想. 巩固教学内容. 培养学生思维的批判性和深刻性,养成良好的学习习惯. 培养学生归纳总结的能力. 巩固教学内容.§5.2解方程(3)教学目标 1. 经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握如何去分母的解题方法. 2. 通过解方程时去分母过程,体会转化思想. 3. 进一步体会解方程方法的灵活多样.培养解决不同问题的能力. 4. 培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神. 教学重点 解方程时如何去分母. 教学难点 解方程时如何去分母. 教学设计
教师活动
学生活动
说明
教师用小黑板出示一组解方程的练习题. 解方程 1、8=7-2y 2、5x-2=7x+8 3、4x-3(20-x)=3 4、-2(x-2)=12 (根据学生做题情况,教师给予评价). 出示例题7,鼓励学生到黑板板演,教师给予评价。 针对学生的实际,教师有目的引导学生如何去掉分母.去分母时要引导学生规范步骤,准确运算. 组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤. 出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程. 教师给予评价. 出示快速抢答题:有几处错误,请把它们—一找出来并改正. 见教参p159 教师给予评价. 出示随堂练习题(根据学生情况做部分题或全部题). 教师引导学生总结本节的学习内容及方法. 布置作业:填写成长记录卡及课本160页习题5—5.1、自主完成解题. 2、同桌互批. 3、哪组同学全对人数多. 一名同学板演,其余同学在练习本上做. 分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母. ①先自己总结. ②互相交流自己的结论,并用语言表述出来. ①自主完成解方程 ②互相交流自己的结论,并用语言表述出来. ③自觉检验方程的解是否正确. (选代表到黑板板演). ①学生抢答. ②同组补充不完整的地方. ③交流总结方程变形时容易出现的错误. ①独立完成解方程. ②小组互评,评出做得好的同学. ①做出本节课小结共交流. ②说出自己的收获及最困惑的地方温故将知新. 激起学生的学习热情. 巩固所学知识为去分母做铺垫. 通过组内交流、合作,达到团结协作精神. 共4页,当前第3页1234 培养学生归纳、概括及语言表达能力. 把“复杂”转化为“简单”,把“新”转化为“旧”的过程,体会转化思想. 培养学生良好的学习习惯. 培养学生思维的批判性和深刻性. 巩固教学内容. 培养学生归纳总结的能力及语言表述的能力. 巩固所学知识.共4页,当前第4页1234