皮皮范文网教案大全九年级数学教案内容页

九年级数学下册《不共线三点确定二次函数的表达式》教学教案(湘教版)

2022-10-09九年级数学教案

【知识与技能】
1.掌握用待定系数法列方程组求二次函数解析式.
2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.
【过程与方法】
通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.
【情感态度】
通过本节教学,激发学生探究问题,解决问题的能力.
【教学重点】
用待定系数法求二次函数的解析式.
【教学难点】
灵活选择合适的表达式设法.
一、情境导入,初步认识
1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?
学生回答:
2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?
二、思考探究,获取新知
探究1  已知三点求二次函数解析式讲解:教材p21例1,例2.
【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.
探究2  用顶点式求二次函数解析式.
例3  已知二次函数的顶点为a(1,-4)且过b(3,0),求二次函数解析式.
【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.
解:∵抛物线顶点为a(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点b(3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.
【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.
探究3  用交点式求二次函数解析式
例4(甘肃白银中考) 已知一抛物线与x轴交于点a(-2,0),b(1,0),且经过点c(2,8).求二次函数解析式.
【分析】由于抛物线与x轴的两个交点为a(-2,0),b(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).
解:a(-2,0),b(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点c(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.
【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.

再来一篇
上一篇:一元二次方程 下一篇:函数的图象
猜你喜欢