皮皮范文网教案大全高一数学教案内容页

3.5 等比数列的前n项和(第二课时)

2022-10-09高一数学教案

教学目的:1.会用等比数列的通项公式和前n项和公式解决有关等比数列的 中知道三个数求另外两个数的一些简单问题 2.提高分析、解决问题能力. 教学重点:进一步熟练掌握等比数列的通项公式和前n项和公式. 教学难点:灵活使用公式解决问题 教学过程: 一、复习:等比数列的有关概念,等比数列前n项和的公式二、例题 例1 已知等差数列{ }的第二项为8,前十项的和为185,从数列{ }中,依次取出 按原来的顺序排成一个新数列{ },求数列{ }的通项公式和前项和公式 ——由题设求{bn},再分组求和法

例2 已知等比数列{an}的前n项和是2,紧接着后面的2n项的和是12,再紧接着后面的3n项的和是s,求s的值.

   ——(1)认真审题(紧接着…);(2)对q的判断.

例3等比数列 前 项和与积分别为s和t,数列 的前 项和为 ,

   求证:

——计算验证形的证明,按公比q=1和 两类分别计算验证.

例4设首项为正数的等比数列,它的前 项之和为80,前 项之和为6560,且前 项中数值最大的项为54,求此数列。

   解:由题意

       代入(1), ,得: ,从而 ,

       ∴ 递增,∴前 项中数值最大的项应为第 项。

       ∴

∴ ,

       ∴ ,

∴此数列为  

例5 已知数列{an}中,sn是它的前n项和,并且sn+1=4an+2,a1=1.

(1)    设bn=an+1-2an,求证数列{bn}是等比数列.

(2)    设 求证数列{cn}是等差数列;

(3)    求数列{an}的通项公式及前n项和的公式.

——思路分析(1)利用题设的递推公式和等比数列的定义证明;(2)利用等差数列的定义证明;(3)借助(2)的结论及题设的递推公式求解. 三、练习:

设数列 前 项之和为 ,若 且 ,问:数列 成等比数列吗? 四、课后作业:《精讲精练》p132 智能达标训练.

再来一篇
上一篇:1.3 交集与并集(3课时) 下一篇:映射
猜你喜欢