皮皮范文网教案大全高二数学教案内容页

等差数列

2022-10-09高二数学教案

教材:(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式    二、例一    在等差数列 中, 为公差,若 且 求证:1°     2°         证明:1°  设首项为 ,则∵   ∴ 2∵   ∴ 注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和 ,即:                    同样:若  则        例二  在等差数列 中,                 1° 若     求                 解:  即    ∴                2° 若  求           解: =                3° 若     求            解:   即    ∴                   从而                4° 若     求           解:∵ 6+6=11+1      7+7=12+2   ……                  ∴        ……                 从而 + 2                   ∴ =2 -                                                     =2×80-30=130  三、判断一个数列是否成等差数列的常用方法      1.定义法:即证明            已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。  2页,当前第112

                解:                             当 时                           时 亦满足  ∴               首项                     ∴ 成等差数列且公差为6     2.中项法: 即利用中项公式,若  则 成等差数列。          已知 , , 成等差数列,求证 , , 也成ap。         证明: ∵ , , 成ap      ∴  化简得:                                                                                                                =                            ∴ , , 也成等差数列。         3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。            例五  设数列 其前 项和 ,问这个数列成ap吗?解: 时        时                   ∵    ∴                       ∴ 数列 不成ap   但从第2项起成等差数列。   四、小结: 略   五、作业:2页,当前第212
再来一篇
上一篇:《中心对称图形》教学设计 下一篇:数的概念的发展
猜你喜欢