皮皮范文网教案大全高二数学教案内容页

不等式的性质(2)

2022-10-09高二数学教案

课    不等式的性质(2)

教学目的:

1 理解同向不等式,异向不等式概念;

2 理解不等式的性质定理1—3及其证明;

3 理解证明不等式的逻辑推理方法.

4 通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯

教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件

教学难点:1 理解定理1、定理2的证明,即“a>b b<a和a>b,b>c a>c”的证明 这两个定理证明的依据是实数大小的比较与实数运算的符号法则

2 定理3的推论,即“a>b,c>d a+c>b+d”是同向不等式相加法则的依据 但两个同向不等式的两边分别相减时,就不能得出一般结论

授课类型:新授课

课时安排:1课时

教    :多媒体、实物投影仪

教学方法:

引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用

教学过程

一、复习引入:

1.判断两个实数大小的充要条件是:

2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?

(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么?

从而引出不等式的性质及其证明方法.

二、讲解新课:

1.同向不等式:两个不等号方向相同的不等式,例如:a>b,c>d,是同向不等式 异向不等式:两个不等号方向相反的不等式 例如:a>b,c<d,是异向不等式

2.不等式的性质:

定理1:如果a>b,那么b<a,如果b<a,那么a>b.(对称性)

       即:a>b b<a;b<a a>b

证明:∵a>b ∴a-b>0

由正数的相反数是负数,得-(a-b)<0

即b-a<0  ∴b<a     (定理的后半部分略) .

点评:可能个别学生认为定理l没有必要证明,那么问题:若a>b,则 和 谁大?根据学生的错误来说明证明的必要性 “实数a、b的大小”与“a-b与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.

定理2:如果a>b,且b>c,那么a>c.(传递性)

        即a>b,b>c a>c

证明:∵a>b,b>c  ∴a-b>0, b-c>0

    根据两个正数的和仍是正数,得

    (a-b)+( b-c)>0  即a -c>0

∴a>c

根据定理l,定理2还可以表示为:c<b,b<a c<a

点评:这是不等式的传递性、这种传递性可以推广到n个的情形.

定理3:如果a>b,那么a+c>b+c.

      即a>b a+c>b+c

证明:∵a>b,  ∴a-b>0,

       ∴(a+c)-( b+c)>0  即a+c>b+c

点评:(1)定理3的逆命题也成立;

(2)利用定理3可以得出:如果a+b>c,那么a>c-b,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.

推论:如果a>b,且c>d,那么a+c>b+d.(相加法则)   

        即a>b, c>d a+c>b+d.

证法一:

a+c>b+d

证法二:

a+c>b+d3页,当前第1123

点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;

(2)两个同向不等式的两边分别相减时,不能作出一般的结论;

三、讲解范例:

已知a>b,c<d,求证:a-c>b-d.(相减法则)

分析:思路一:证明“a-c>b-d”,实际是根据已知条件比较a-c与b-d的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的

证法一:∵a>b,c<d

∵a-b>0,d-c>0

∴(a-c)-(b-d)

=(a-b)+(d-c)>0(两个正数的和仍为正数)

故a-c>b-d

思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的

证法二:∵c<d    ∴-c>-d

又∵a>b

∴a+(-c)>b+(-d)

∴a-c>b-d

四、课堂练习

1 判断下列命题的真假,并说明理由:

(1)如果a>b,那么a-c>b-c;

(2)如果a>b,那么 >

分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真

答案:(1)真 因为推理符号定理3

(2)假 由不等式的基本性质2,3(初中)可知,当c<0时, < 即不等式两边同乘以一个数,必须明确这个数的正负

2 回答下列问题:

(1)如果a>b,c>d,能否断定a+c与b+d谁大谁小?举例说明;

(2)如果a>b,c>d,能否断定a-2c与b-2d谁大谁小?举例说明

答案:(1)不能断定 例如:2>1,1<3 2+1<1+3;而2>1,-1<-0 8 2-1>1-0 8 异向不等式作加法没定论

(2)不能断定 例如a>b,c=1>d=-1 a-2c=a-2,b+2=b-2d,其大小不定 a=8>1=b时a-2c=6>b+2=3 而a=2>1=b时a-2c=0<b+2=3

3 求证:(1)如果a>b,c>d,那么a-d>b-c;

(2)如果a>b,那么c-2a<c-2b

证明:(1)

(2)a>b -2a<-2b c-2a<c-2b

4 已和a>b>c>d>0,且 ,求证:a+d>b+c

证明:∵

∴(a-b)d=(c-d)b

又∵a>b>c>d>0

∴a-b>0,c-d>0,b>d>0且 >1

∴ >1

∴a-b>c-d  即a+d>b+c

评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速 这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧

五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a>b b<a=、传递性(a>b,b>c a>c)、可加性(a>b a+c>b+c)、加法法则(a>b,c>d a+c>b+d),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法

六、课后作业

1.如果 ,求不等式 同时成立的条件.

解:

2.已知 ,   求证:

证:∵      ∴

又∵     ∴ >0      ∴

∵       且

3.已知   比较 与 的大小.

解: -   

当 时∵ 即

        ∴   ∴ <

当 时∵ 即 3页,当前第2123

      ∴    ∴ >

4.如果   求证:

证:    ∵   ∴    ∴

     ∵   ∴    ∴

七、板书设计(略)

八、课后记:

3页,当前第3123
再来一篇
上一篇:不等式的解法举例 下一篇:让教学设计更符合学生的认知
猜你喜欢