皮皮范文网教案大全八年级数学教案内容页

立方根

2022-10-09八年级数学教案

一、教学目标

1.了解和开立方的概念;

2.会用根号表示一个数的,掌握开立方运算;

3.培养学生用类比的思想求的运算能力;

4.由立方与的教学,渗透数学的转化思想;

5.通过符号的引入体验数学的简洁美.

二、教学重点和难点

教学重点:的概念与性质.

教学难点:会求某些数的.

三、教学方法

启发式,讲练结合

四、教学手段

幻灯片.

五、教学过程

(一)复习提问

请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

在同学们回答后,启发学生是否可试着给数的下个定义.

1.的概念:

如果一个数的立方等于a,这个数就叫做a的.(也称数a的三次方根)

用数学式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

(1)正数有一个正的.

(2)负数有一个负的.

(3)0的是0.

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.
  第 1 2 页  

再来一篇
上一篇:分式的加减法 下一篇:生活中的旋转(优质课的教案)
猜你喜欢